Heapy

a memory profiler and debugger
for Python

Sverker Nilsson
sverker.is @ home.se

June 2, 2006

Goal

* Make a tool for the Python programming language
* Support memory debugging and optimization

* Provide data not available directly in Python

* Manage complexity of large programs

* Design to generalise well to new situations

The engineer wishes

* To make programs that run in limited memory
e Especially long running and embedded systems
* Avoiding guesswork by accurate observations
* Using knowledge to make wise optimizations

The problem

* Automatic memory management 1s not automatic
* Garbage collection frees unreferenced objects only
e Referenced objects may still be useless to keep

* Complex programs are easier to make using GC

* Tools needed to understand memory behaviour

* Has been a lack of such tools for Python

Questions raised

e HOW much memory is used by objects?
* WHAT objects are of most interest?
* WHY are objects retained in memory?

HOW much memory is used by objects?

* No built in support for this in Python

e Requires code to look into objects at
implementation (C)level

* Heapy provides this code for predefined and user
defined Python objects

* Special problems with objects from extension
modules

* An interface 1s defined so extension modules can
supply functions for sizing and other information
about their types

WHAT objects are of interest?

* All objects in memory may be of general interest,
except those used only for analysis purposes

* Of special interest are objects that use much
memory, either because they are big or there are
many of them,

* and objects that are no longer of any use to the
program --- memory leaks,

* and objects that refer to other objects, keeping
them in memory perhaps unnecessarily

WHY are objects retained in memory?

* Is there any good reason?

* [f not, there 1s still some reason but a bad one

* Objects are generally retained because they are
referenced by other objects

* The referrers and their relations can tell if objects
are retained for a good reason or not

* The reference graph may be too big and complex
to understand directly

* To manage complexity, summarizing views exist
such as reference pattern and paths to root

Memory leaks

* Memory that 1s allocated but 1s no more used

* Problem for long running applications and when
memory 1S sparse

e Can occur even with automatic garbage collection

e Garbage collection frees objects when they can not
possibly be used anymore 1.e. when there are no
references left

* [eaking objects are reterenced but still of no use

Finding memory leaks

* A symptom i1s often that memory usage tends to
increase with time

e Often a critical section can be 1dentified where
memory usage increases unexpectantly

* An example 1s opening and closing a window
when one expects all objects used by the window
to be freed after it 1s closed

 Comparing memory population before and after
the critical section may reveal the leaking objects

Memory profiling

* To get an overview and find critical sections
where memory leaks are likely to occur

* Shows memory usage of objects grouped by
different criteria

* Shows memory usage as it evolves with time

Different kinds of memory profiling

* A constructor profile classifies cells according to
the kinds of values they represent

* A retainer profile classities cells by information
about the active components that retain access to
the cells

* A producer profile classifies cells by the program
components that created them

* A lifetime profile classifies cells by the cell's
eventual lifetime

* Lag, drag and void include usage information

Constructor profiling

* (Classifies objects by type or class

 Type 1s a built 1n attribute of Python objects, eg a
predefined type (list, int etc) or user defined

* (Class 1s the same as Type in “new style” objects

Retainer profiling

e Retainer edge classification — consists of a set of
edge descriptions such as attribute name, indices
or keys

e Retainer classification — consists of a set of
classifications of the retainers themselves

Retainer edge profiling example

>>> (h.heap()&str) .byvia
Partition of a set of 14205 objects. Total size = 845464 bytes.

0 0

Index Count % Size % Cumulative % Referred Via:

0 1510 11 156240 18 156240 18 '.co_code'
1 1511 11 99432 12 255672 30 '".co_filename'

e 1510 strings referred via 'co_code' attribute

e 1511 strings referred via 'co_filename' attribute
* One filename for each code object 1s suspect

e Obvious optimization possibility

* The code objects could share file names

Example optimization suggested by
retainer edge profiling

* Code objects could share file name strings
e Optimization was introduced in Python 2.4
* Could possibly been found quicker using profiling

>>> (h.heap() &str) .byvia
Partition of a set of 13082 objects. Total size = 935964 bytes.
Index Count % Size $ Cumulative % Referred Via:

0 2605 20 288004 31 288004 31 '.co_code'

11 55 0 3312 0 729420 78 '.co_filename'

Other profiling

* Not implemented in Heapy 0.1

* A producer profile classifies cells by the program
components that created them

* Lifetime profiler classifies each object according
to its eventual lifetime

* Lag, drag and void include usage information

* Drag is the time after last use until an object may
actually be freed — can find leaking objects

* Can not be generated continuously, only after the
program has finished, with special instrumentation

The WHY question revisited
Why are objects retained in memory?

* Sometimes answered directly by profiling

e Otherwise have to look into the reference graph
* The entire graph could be overwhelming

* Need for different summarizing views

e Path from root analysis

e Reference pattern

Path from root analysis

* Assumes a root from which objects can be reached

* A path is a walk visiting any node at most once

* A single path may tell why an object 1s retained

* But there may be astronomical numbers of paths

* Finding the interesting paths among all paths may
be practically impossible to do manually

* The shortest paths are often much fewer than all the
paths and of special interest by themselves

* If the shortest paths are not enough, it 1s possible to
find longer paths

Shortest paths from root example

e Shortest paths: S.E.E & E.S.E
e Longest: W.W.S5.5.S.E.N.N.E.S.S.E.N.N.E
e Other: W.W.S.S.S.E.N.N.E.E.E

Reference pattern

* Another way to manage complexity and tell why
objects are retained in memory

* Simplifies the reference graph when there 1s much
repetition 1n the data structures

* Treats retainer objects of the same kind as one unit

* The reference pattern 1s itself a graph

* Presented as a spanning tree

Reference pattern example

e Reference graph Reference pattern

Other design concepts

* Universal sets — unify different set representations
* Identity sets — address based object wrappers

* Kind objects — symbolic sets

* Equivalence relations — classification definitions
 Remote monitor — separates observer from target
* Profile browser — shows graphical time series

Profile browser example

File Pane Graph Table Window Help
X| Range ~-| +| |Asample - | +|

= : _ IIIIII | Collect|
+ Gria| [20 31 CREEY —

¥ Range -/ + B sample
| Grid| [2M W Auto| m
= . - SR

e * I = il Sample RB: 31 at Wed oot 26 22:01:42 2005
Bytes B! | Sample B: 24 at Wed oot 26 21:553:38 2005

I Size %h:Tot b-E %h:Tot Kind

1800k, | 3481K 100 519K 15 <Totals

TBO0K. | : : 1801K 52 351K 10 mtr
: 2 388K R tuple

1400K. | 5 : 300K
: : 226K
1200K | : : 187K
B B 162K
1000K. | : ; 154K
: : 25840
500K : : 61452
y : ; 54944
40072

o

114K 3.3 <iother=s

a 0 dict of module

] 0 types .. CodeTyvpe
functicn

a 0 dict of claes
dict ino cwner)
list
dict of type
type

A = S .
P s < T Y

BOOK |
400K |

200K |4

0K |
|Samplels 18 20 2z 24 26 28 30 32 34 3

u iy s —

Example, finding & sealing a memory leak

* The target was a GUI application

* The critical section was open — close of a window
 Remote monitor enabled transparent observation
* Snapshot was taken betfore the open operation

* Window was then opened and closed

* New snapshot was taken and compared to old one
* The difference was a set of leaked objects

* Shortest paths and reference pattern show context
* The leak cause was found 1n library widget code
e Repair could be tested directly from the monitor

* Finally the source code could be fixed and tested

Summary of main features

e Information not available directly in Python 1s
provided such as object sizes and relations

e Various memory profilers are designed to help
finding unknown optimization possibilities

e [eaking objects can be extracted by comparing
different memory population snapshots

e Reference patterns and shortest reference paths
can help tell why objects are kept in memory

* Accurate observation using special C techniques

* Concepts such as sets and equivalence relations
are intended to generalize well to new situations

Future work

* More kinds of profiling, some of which may rely
on modifying the Python virtual machine

* Improved reference patterns for complex cases

* Automatic validation of expected memory usage

e Readily support common extension modules

* More tests, examples and documentation

* Make sure to work 1n various operating systems

* Theoretical model building and analysis, maybe
using concepts from cognitive science such as
distributed cognition

THANK YOU

* Heapy i1s released under an Open Source license
e Tested with C Python 2.3 - 2.4

 Known to compile so far in Linux

* Source code 1s available for download

e http://quppy-pe.sourceforge.net

